

Activity four: Hive health surveillance system

Hive health is complex but crucial

Healthy hives improve our **food security**, **biodiversity**, and even **individual wellbeing**

Honeybees have experienced declines in many parts of the world **Contributing factors include:**

Nutrition Agricultural Chemicals Hive management Climate **Pests and Diseases**

Factors interact with each other:

Hives that experience stress from one factor may be less tolerant of pest and disease incursions

Protecting our pollinators

Rapidly responding to pests and diseases in individual bee hives

Monitoring system

Exotic pests Established pests Other measures of hive health e.g., Beneficial microbes

eDNA High throughput Sequencing

Traceability Tracking individual hives User friendly Links to other data platforms e.g., Orchard traceability system or BeeMAX **Hive tracking devices**

CTORIA

The 'buzz' on eDNA metabarcoding

Environmental DNA

• When species interact with their environment they leave behind traces of DNA e.g., faeces, shed skin or exoskeletons, mucus, hair, or body parts

• Can be found in soil, water, or even the air

Metabarcoding

• Species identification using sections of DNA (animal, plant, bacteria, or fungi)

How eDNA metabarcoding might monitor hives

Exotic pests and diseases

- eDNA was used to first detect
 North American bullfrogs in French
 ponds
- eDNA trials on ethanol- washes for Varroa mite in NZ (Francesco Martoni)

Established pests and diseases

- Provide beekeepers with information on the health of their hives
- What symptoms should they watch out for if a pest or disease is detected?

Beneficial microbes in bee guts or the hive

Beneficial microbes might improve nutrition, help defend against pathogens and/or help detox pesticides (Motta et al., 2022)

Research is linking bee gut
bacteria to bee health (Raymann & Moran, 2018)

Traceability matters

Track hive movement, contact trace exotic incursions, and/or identify poisoning events

Hives used for pollination visit different farms during the season

- Exposes hives to different environments including pests and diseases
- Exposes hives from different apiaries to one another
- Exposes hives to agricultural chemicals

What have we done so far?

Selected four hives Two trackers in each hive

- GPS
- Temperature
- Humidity

DJPR Smart Farm -> Irymple farm

Collecting samples for eDNA metabarcoding every two weeks

- Debris from the bottom of the hive
- Insects
- Brood
- Dead bees
- Wax

Next steps

Trial different trackers

- Trackers tested so far are not user-friendly and have short lifespans

Continue sampling hives and speaking with apiarists

Linking data to on-farm data platforms

- Orchard traceability system

Processing hive samples for eDNA metabarcoding

- Insects
- Fungi
- Bacteria

Things to think about

Minimise hive disturbance

- Sampling and tracking devices

Apiarist privacy

- Protected and feel safe using any end products

Monitoring needs to be user-friendly and benefit apiarists

- Provide information on hive health

How do we define a hive?

- Apiarists may swap frames/components between hives
- Bees can enter the wrong hive

Summary

Hive health is complex but crucial

Monitoring

- eDNA and metabarcoding
- Traceability
- Tracking devices
- On-farm data platforms

Currently tracking and monitoring four hives

